The Standard Model

$$
\begin{aligned}
& \underbrace{U S U(3)_{c}}_{Q(1)_{y} \times \operatorname{SU}(2)_{L}} \times \operatorname{SU}_{V}=T_{3}-2 \rho \sin ^{2} \theta_{c} \\
& \operatorname{SU}(2) \text { doublets } T=I_{A}=T_{3} \text { free } \\
& T=1 / 2 \text { pram. }
\end{aligned}
$$

quarks - interact with $g(8)$
Jigs double $\varphi=\frac{1}{\sqrt{2}}\binom{0}{v+h(x)}+\begin{aligned} & 1 / 3 \\ & -1 / 2\end{aligned}$
interacts with $W ; z \quad T_{3}=-1 / 2$ not with $\gamma, Q_{0}=0$
not with $g \quad \rho_{S}=0$
$\frac{1}{\sqrt{2}} g_{f} v\left(\bar{f}_{2}\right)$ interacts with fermions - ad hoc

$$
\begin{gathered}
\left.+\bar{f}_{R+}+f_{f}\right) \\
m_{f}=\sqrt{\frac{1}{2} g_{f} v}
\end{gathered} \quad V(\phi)=\mu^{2} \phi^{+} \phi+\frac{\lambda^{2}}{2}\left(\phi^{+} \phi^{2}\right)^{2}
$$

2 parameters \quad.g. $\lambda ; v$
parameters of 5 M

$$
\begin{aligned}
& M_{k}=\lambda v \\
& M_{u}=\frac{1}{2} g v=\frac{e v}{2 \sin \theta u} \\
& M_{z}=\frac{1}{2}\left(g^{2}+g^{2}\right)^{1 / 2} v=\frac{e v}{2 \sin \theta} \cos \theta \pi=\frac{M_{m}}{\cos 2} \\
& M_{f}=0 \\
& m_{f}=\frac{1}{\sqrt{2}} v \cdot g_{f} \\
& e \\
& \sin \theta w \quad \lambda \quad g_{f}
\end{aligned}
$$

$\alpha_{s} \quad \theta_{S}(Q C D$ vecuurm angle) CKYA madrix 4 pamams $\delta, \theta_{12}, \theta_{25}, \theta_{13}$ 19 parameters of the SKI

Observables:
MH_{4}

$$
\begin{aligned}
& \text { 「u } \\
& M_{7}, T_{7}-\operatorname{LEP} \\
& {[4 \rightarrow} \\
& z \rightarrow q \bar{q} \Rightarrow \sigma_{\text {nad }}-M_{q} E P \\
& R_{l}=\frac{\text { oreep }}{\text { Goriad }} \quad \angle E P \\
& \left.A_{F B}^{l, c, b} \text { - áspmind metry may } g_{V}^{f} ; g_{*}^{f}\right)<E \rho \\
& A_{l, c, p}^{*} \text { left rigut asym } \text { uith polarited beoms } S L C \\
& \sin ^{2} \theta_{\text {W }} L E P \text {, SLC (haw Tel, } \\
& R_{e}=\frac{\sigma_{z} \rightarrow c_{c}}{\sigma_{b z} \rightarrow \text { had }} \\
& \text { (nc)' }
\end{aligned}
$$

more veriesles that need input (nvissand poems)
$\overline{m_{c}} \bar{m}_{s} m_{t}$ final (t)
Examples of infer connection:
Mu
true level

$$
\frac{e v}{2 \sin \theta_{e c}}
$$

$$
\frac{\mathrm{rad}}{\alpha \operatorname{tn} \frac{\mathrm{NH}}{v}}
$$

Mu: H_{t} 个 predict
 for M_{k}
 before riggs dis eave
bottom
$\alpha m_{t}^{2} \Rightarrow$ predict range for mt before top discovery

